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ABSTRACT

Motivation: For high-throughput prediction of the helical
arrangements of large RNA molecules, an innovative method termed
multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA)
has been proposed. A key step in this promising technique is to
detect peaks accurately from noisy radioactivity profiles. Since
manual peak finding is laborious and prone to error, an automated
peak detection method to improve the accuracy and throughput
of MOHCA is required. Existing methods were not applicable to
MOHCA due to their high false positive rates.
Results: We developed a two-step computational method that can
detect peaks from MOHCA profiles in a robust manner. The first
step exploits an ensemble of linear and non-linear signal processing
techniques to find true peak candidates. In the second step, a binary
classifier trained with the characteristics of true and false peaks
is used to eliminate false peaks out of the peak candidates. We
tested the proposed approach with 2002 MOHCA cleavage profiles
and obtained the median recall, precision and F-measure values of
0.917, 0.750 and 0.830, respectively. Compared with the alternatives
considered, the proposed method was able to handle false peaks
substantially better, thus resulting in 51.0–71.8% higher median
values of precision and F-measure.
Availability: The software and supplementary data are available at
http://dna.korea.ac.kr/pub/mohca.
Contact: sryoon@korea.ac.kr

1 INTRODUCTION
Determining ribonucleic acid (RNA) structures is critical for
biological research. Despite advances in related technology and a
large effort to uncover RNA structures, progress has been slow due
to the challenges in processing thousands of RNA samples in a high-
throughput manner. Among many techniques developed to constrain
RNA structure models, hydroxyl radical cleavage patterns have
been used to acquire accurate residue–residue distance constraints.
In spite of its accuracy, it is still unwieldy to investigate the structure
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of a large RNA molecule using the cleavage mapping method,
because it is laborious and expensive to tether cleavage agents to
each residue in a large RNA molecule.

For high-throughput prediction of large RNAmolecules, Das et al.
(2008) proposed an innovative method termed multiplexed hydroxyl
radical (·OH) cleavage analysis (MOHCA). This method randomly
incorporates radical cleavage agents followed by two-dimensional
gel electrophoresis to detect pairs of contacting residues within
a structured RNA molecule. The information on residue–residue
interactions is then translated into constraints for modeling tertiary
structure with the fragment assembly of RNA (FARNA) method (Das
and Baker, 2007).

A flowchart of MOHCA is shown in Figure 1a. To randomly
incorporate cleavage agents into RNA, Das et al. (2008) first
performed in vitro transcription of the RNA in the presence of a
modified nucleotide triphosphate (one type at a time) at a frequency
of one modification per RNA. The modified nucleotide contains a
2′-amino group for attachment of the cleavage agent (an Fe-EDTA
chelate) and a phosphorothioate group for specific cleavage to locate
the position of the cleavage agent. Then the RNA is radio-labeled
and a cleavage agent is tethered to the modified nucleotide. The
pool of RNA molecules is gel purified and folded to the desired
state, and radical generation is initiated by reducing Fe(III) to
Fe(II). The cleavage products are separated by polyacrylamide gel
electrophoresis to identify the cleavage position. The cleaved RNA
molecules in the gel are then treated with iodine to induce backbone
scission at the phosphorothioate and separated in the orthogonal
dimension to identify the position of the responsible cleavage agent.

Figure 1b shows the image of a two-dimensional MOHCA gel,
where each vertical strip represents a cleavage profile generated by a
different source residue. The cleavage profile due to a radical source
at A115 (Adenosine at 115) for the gel is shown in Figure 1c with
four replicates independently prepared. In each cleavage profile, the
peak location corresponds to the location of the nucleotide hit by the
radical source at A115. Since the sequence of the sample RNA is
already known, one can deduce the type of nucleotide at the position
indicated by the peak. Secondary structure of the molecule (Fig. 1d)
is then generated with the constraints inferred from the gel, and its
tertiary structure is determined by FARNA (Fig. 1e).
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Fig. 1. Inferring RNA structure by MOHCA (Das et al., 2008). (a) Flowchart of MOHCA. (b) A sample MOHCA gel image with cleavage agents tethered to
adenosine. (c) The cleavage profile (red) due to Fe(II) tethered at A115 for the gel in (b) and four replicates. (d) The native secondary structure for the P4–P6
domain of the Tetrahymena ribozyme with the constraints inferred from the gel in (b) overlaid. Cleavage agents (filled circle) are connected to representative
cleaved residue (open circles). (e) A structural model using FARNA constrained by MOHCA with rainbow coloring from blue (5′) to red (3′).

A key step in the entire MOHCA method is therefore to accurately
detect the peak location in each cleavage profile. The peak locations
in each profile correspond to the position of the nucleotides that are
interacting with a radical source, and the peak detection performance
will eventually affect the quality of structure inference to a great
extent. Consequently, in the original MOHCA study, the peak
location in each cleavage profile was selected and verified manually,
which limited the overall throughput of MOHCA.

Due to gel smudges, nucleases and heterogeneous remnants from
cleavage events and the additive noise from observation instruments,
the cleavage profile is usually very noisy and contains many false
peaks. This makes it challenging to automate the peak detection
process. For example, Figure 2 shows five cleavage profiles from
an actual MOHCA experiment. The top profile indicates that the
resulting cleavages (as shown by peaks) occur by the radical source
at position 113, and the hit nucleotide is the residue at position 207.
Small peaks at position 199, 172 and 155 are considered as false
positives (FPs). The true ‘hit’ is indicated by a black dot and the
false hits by white dots.

The conventional techniques we tested tend to erroneously
filter out important signals while preserving false peaks. For
instance, continuous wavelet transform-based pattern matching
(CWT) (Du et al., 2006) and the PROcess package included
in Bioconductor (Gentleman et al., 2004), which were developed
mainly for analyzing mass spectrometry data, show rather
unsatisfactory detection performance on MOHCA profiles.
In addition, popular signal processing techniques such as low-pass
filtering (LPF; Oppenheim and Schafer, 1989) followed by zero-
crossing detection in the derivative produce too many false peaks.
Using these existing methods typically results in high misdetection
rates and is of little use for MOHCA peak detection.

We propose a new computational method for accurately detecting
peaks from many MOHCA profiles in a high-throughput manner.
As outlined in Figure 3, the proposed approach consists of two
major steps called intra-profile peak detection and inter-profile peak
analysis. The first intra-profile step considers individual cleavage
profiles and collects peak candidates from each profile using an
ensemble of sophisticated signal processing techniques. The focus of
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Fig. 2. Five cleavage profiles from an actual MOHCA experiment. In each
profile, the x and y axes correspond to the position of ·OH cleavage and
intensity, respectively. Each potential hit judged by eyes is marked with a
solid dot. Any hits that appeared to be gel smudges, nucleases or spectator
hits (i.e. present in other profiles) are marked with open circles. Each profile
shares a background cleavage pattern due to the occasional presence of extra
spectator sources on the RNA. This background often has apparent peaks,
but these are not correct hits. The dotted lines mark where RNA products
corresponding to different cleaved residues would run on the gel.

this step is to reduce false negative (FN) rates or to discover as many
true peaks as possible. It is thus possible that the peak collection may
contain FPs. The second inter-profile step is to eliminate such false
peaks by considering multiple cleavage profiles simultaneously.
To distinguish true and false peaks, we use an support vector
machine (SVM)-based binary classifier (Bishop, 2007) trained with
labeled peaks with respect to features extracted from both spatial and
Fourier domains. We next describe our results in detecting peaks by
the proposed method from cleavage profiles collected from actual
MOHCA experiments.

2 RESULT AND DISCUSSION
We tested the proposed peak detection method with the profiles
obtained from 2002 gels used in 79 batches of MOHCAexperiments.
These gels covered all possible radical source attachment points,
both 5′- and 3′-labeled samples, and different RNA solution
conditions. Our technique was then compared with several
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Fig. 3. Overview of the proposed approach.
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Fig. 4. We defined TP, FP and FN peaks as detected true peaks, falsely
detected peaks and undetected true peaks, respectively.

alternatives including CWT (Du et al., 2006) and LPF-based
methods (Oppenheim and Schafer, 1989) in terms of three widely
used performance measures—recall, precision and F-measure
(Manning and Schütze, 1999; Witten and Frank, 2005). The
execution time and space requirement of all the techniques tested
were negligible and not compared.

CWT was chosen because it is one of the most advanced
algorithms in terms of robustness, efficiency and ease of use.
Although CWT was originally developed for mass spectrometry
data, it was able to detect peaks in MOHCA profiles to some
extent. The LPF-based technique was included due to its popularity
and wide applicability in the signal processing area. Besides, we
tested the PROcess package included in Bioconductor (Gentleman
et al., 2004) but failed to make it detect any meaningful peaks,
and no further result comparison was made for PROcess. There
also exist deconvolution-based peak detection techniques for gas
chromatography (GC) data (e.g. Vivó-Truyols et al., 2005), but they
were not included in comparison since we found that MOHCA peaks
do not fit well the peak model used in these methods.

Figures 5–9 summarize our results; more details of the
profiles used and the full statistics obtained are available in the
Supplementary Material. For notational convenience, we refer to
the tested methods by the short labels defined in the caption of
Figure 5. Of note is that a partial implementation of our approach,
namely the first intra-profile step alone, was included in comparison.
We wanted to assess how well this part performs by itself and how
much performance gain the second inter-profile step adds thereafter.

In order to compute precision, recall and F-measure, we defined
true positive (TP), FP and FN peaks as illustrated in Figure 4.
Note that true negatives cannot be defined in our context. Recall
is given by TP/(FN + TP) and indicates the fraction of detected
true peaks out of all true peaks. The maximum value of recall is
1, and recall decreases as the number of undetected true peaks
(i.e FNs) increases. Precision is defined as TP/(TP + FP) and
represents the portion of true peaks out of all detected peaks.
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Fig. 5. Performance comparison: recall (a), precision (b) and F-measure
(c) values measured over 2002 MOHCA profiles. The line in the middle
of a box indicates the median position, and the upper and lower boundaries
represent the locations of the 75th and 25th percentiles, respectively. Symbol
+ indicates an outlier. The peak detection methods used and their labels
are as follows: P: proposed method, Pi: proposed method (intra-profile step
only), C1: CWT (SNR > 1), C5: CWT (SNR > 5), C12: CWT (SNR > 12),
L21: 21-tap LPF, L101: 101-tap LPF, L1001: 1001-tap LPF. The normalized
passband frequency of all LPFs is 0.01. Refer to the Supplementary Material
for additional results.
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Fig. 6. Peaks detected from a typical profile set by the different techniques
tested (profile set used: mk84-Abomb-5prime-Unfolded). The proposed
method detects much fewer FP peaks than the alternatives.
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Fig. 7. F-measure comparison as α varies from 0 to 1. Each line corresponds
to the average F-measure value of a certain technique calculated over 79
profile sets, and each vertical bar centered at the curve represents the standard
error range around the average.

A perfect detector would have precision of 1, but precision is
lowered if false peaks are detected. F-measure can combine recall
and precision into a single performance measure and is defined
as 1/{[α/Precision]+[(1−α)/Recall]}, where α is a parameter
determining the weighting of precision and recall. The F-measure
of a perfect peak detector would be 1.

Figure 5 compares the proposed method with the alternatives with
respect to the three comparison criteria. As far as recall is concerned,
all the techniques tested resulted in high values, suggesting that few
true peaks went undetected by using any of these methods. However,
the precision of the proposed method was significantly higher than
that of the others. This indicates that the proposed technique would
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Fig. 8. Comparison of precision–recall distribution (a) over the entire 2002
profiles and (b) Over 494 noisy profiles (selected from the entire profiles).
Points of different shapes indicate the locations of the average precision and
recall values of different detectors. Each two-dimensional error bar centered
at a point represents the range set by the SD around the average. More details
of the 494 noisy profiles are available in the Supplementary Material.

typically detect much fewer false peaks (see Fig. 6 for an example).
Furthermore, the F-measure of the proposed method was much
higher due to its higher precision. Figure 5 also reveals how the
proposed technique achieves its performance advantage over the
alternatives. The first intra-profile step seeks to minimize the number
of FNs (or undetected true peaks) to maintain high recall. The second
step then prunes out most false peaks detected by the first step, for
achieving high precision. Taken together, the proposed technique
outperformed the competing methods by a large margin: the median
precision and F-measure (α=0.25) of our approach were higher by
64.0–71.5% and 51.0–71.8%, respectively.

We further investigated how F-measure changes as varying α

from 0 to 1. Given that F-measure is equal to recall when α = 0
and gradually becomes precision as α increases to 1, this test would
reveal the relative performance of the compared techniques over all
possible combinations of weights on precision and recall. As plotted
in Figure 7, it is evident that the proposed technique consistently
produced the highest level of F-measure for most α values.
The performance of Pi and the LPF-based methods was slightly
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Fig. 9. Comparing maps of radical sources and cleavage sites for profile
rd139b-Abomb-5prime-2MNaCl (a) and profile rd148c-thirdround-p4p6-
CBOMB-5prime-unfold-MKtop (b). The x and y axes represent the locations
of radical sources and cleavage sites, respectively, in an RNA sequence. A dot
indicates the location of a predicted peak either manually (labeled ‘Manual’)
or computationally (labeled ‘P’, ‘C5’, ‘L21’, etc.). The location of a manually
picked peak (i.e. a dot in the ‘Manual’ map) is marked by a circle in the maps
derived from the computational methods.

better only around α = 0. Figure 7 also indicates that using only
the first half (i.e. label Pi) of our approach was sufficient to achieve
higher F-measure than that the alternatives could provide. The full
implementation of our approach (i.e. label P) showed even better
F-measure leveraged by the second inter-profile step, only with a
negligible performance loss near α = 0.

One of recall and precision can be traded-off for boosting the
other, and suboptimal detectors would have near perfect recall but
very poor precision, or vice versa (Manning and Schütze, 1999).
To see how this trade-off occurs, we plotted in Figure 8a the two-
dimensional distribution of the precision and recall measured over

Table 1. The average MSE value of the constraint maps derived from each
detection method over the 2002 profiles (all values normalized to P)

Method P Pi C1 C5 C12 L21 L101 L1001

1.00a 2.82 16.5 7.46 3.95 14.0 14.0 10.0

aThe original (unnormalized) value is 2.3744×10−5.

all the 2002 profiles. For clarity in presentation, only the mean and
SD of each distribution are presented. As indicated in the figure, the
proposed technique maintained balanced precision and recall over
all the profile sets whereas the other methods skewed more towards
high recall. In addition, the average precision of the proposed method
was significantly higher, although the SD values of some alternatives
were smaller.

In order to compare the baseline performance and robustness
with noise, we selected 494 ‘noisy’ profiles out of the entire 2002
profiles and measured the precision and recall therein. The true
peaks appearing in these profiles were more difficult to distinguish
from false peaks, according to our manual assessment described in
Section 4.4. As shown in Figure 8b, the impact of noise on precision
and recall was marginal for all the methods tested. However,
the performance of the proposed technique remained superior to
that of the alternatives, and the precision–recall balance was also
maintained well.

Besides the three performance measures, we also compared the
competing methods using the constraint maps of radical sources
and cleavage sites. If two maps of constraints look similar, that will
strongly suggest that the final RNA models predicted by FARNA
or other tertiary structure predictors will also look similar. Figure 9
shows two sets of such maps, where the dots in each map correspond
to the peak location predicted from the techniques in comparison.
The circles in the maps indicate the locations of manually picked
peaks. As is evident in Figure 9, the map derived from the proposed
method matches the manual map most closely. For more quantitative
comparison, we also calculated the mean squared error (MSE; Kay,
1993) of every map with respect to the corresponding manual map.
The average MSE value calculated for each method over the entire
2002 profiles is listed in Table 1; more details of computing MSE are
explained in Section 4.4. It is clear that our technique can provide a
constraint map that matches the manual map most closely.

3 CONCLUSION
We have developed a computational means to detect peaks appearing
in the cleavage profile curves of the MOHCA method. The proposed
approach combines signal processing techniques with supervised
learning in order to maintain high TP rates while suppressing
detection of false peaks. Sensitivity and specificity analysis was
performed using 2002 profiles collected from 79 batches of MOHCA
experiments. The median recall, precision and F-measure (α=
0.25) values achieved were 0.917, 0.750 and 0.830, respectively,
outperforming the alternatives tested by a large margin, especially
in terms of precision and F-measure. These results suggest that our
approach can be a very effective tool for enhancing the throughput
and accuracy of MOHCA by automating its most time-consuming
part, thereby making high-throughput prediction of RNA structures
by MOHCA more attractive. Furthermore, it would be possible to

1141



[19:39 21/4/2009 Bioinformatics-btp110.tex] Page: 1142 1137–1144

J.Kim et al.

Fig. 10. Proposed peak detection procedure: (a) raw data (simulated), (b) median filtered output, (c) squaring operator output, (d) derivative of (c) and (e)
output after post-processing. False peaks are suppressed, and only the peak in the middle is detected.

apply our approach to other peak detection tasks that are based upon
similar peak characterization and modeling.

4 METHODS

4.1 Characterizing peaks in MOHCA profiles
According to our analysis, the peaks appearing in MOHCA profiles possess
the following characteristics:

(C.1) As the intensity and width of a peak candidate decrease, so does
the possibility of this being a true peak.

(C.2) The largest peaks at the beginning and the end of a profile are not
true peaks but rather other features of the MOHCA pattern (bands
that are not cleaved in the first or second cleavage steps of the
protocol, respectively), and these two peaks should be ignored.

(C.3) The possibility of a peak candidate being true decreases as its
location gets close to the beginning or end of a profile.

(C.4) If multiple profiles have peak candidates at almost the same
location, then they are usually false peaks generated by spectator
sources or gel smudges, possibly except the case described in (C.5).

(C.5) Even if multiple profiles have peak candidates at similar locations,
these candidates are often true peaks if the profiles that contain
those peaks were extracted from close locations on the gel.

As is evident above, considering profiles individually is not sufficient, and
multiple profiles should be examined simultaneously for accurate detection.

4.2 Intra-profile peak detection
4.2.1 Motivation We first describe our approach to find peaks in each
profile. Denoting y(x) as an observation sequence, and g(x) and n(x) as
desired information and noise sequence, respectively, then the statistical
model of an observation is y(x)=g(x)+n(x), where g(x) is assumed as a
sampled sequence of well-behaved function g(t), t represents either time or
space, and the unpredictable portion of the signal n(x) is statistically modeled
as white Gaussian noise. In general, no statistic on the g(x) and n(x) is given
and only decision guideline of peak can be provided.

In the absence of noise, the peak detection problem can be easily translated
into a problem to find local maxima, and hence the points xk satisfying
∂y(x)
∂x |xk =y′(xk)=0 become the solutions (Bertsekas, 1999). In practice, due

to the discrete nature of the sequence, difference �y(xk)=|y(xk)−y(xk−1)|
is being used instead of derivative and this method is implemented via
the zero-crossing detection of the difference sequence. That is, if �y(xk)
is positive and �y(xk+1) is negative, we choose xk (or xk+1) as a peak
point. However, in this model where the signal is surrounded by the noise,
the problem becomes complicated. Consider the derivative of y(x) given
by y′(x)=g′(x)+n′(x). Typically, the derivative operator ∂

∂x amplifies the
noise fluctuations since they contain high frequency components. Moreover,
no magnitude information matters in this process. Hence, even though a

biologist observes only a single peak, many zero-crossing points caused
by the noise sequence are generated. If we decide all those points as a
peak, the false peak rate will be unacceptably high. In order to reduce the
false peak rate, prefiltering is commonly used before the derivative such
as Parks–McClellan filtering or windowing-based LPF (Oppenheim and
Schafer, 1989). Since the peak detection is a blind problem and no prior
knowledge on the spectrum of the information is given, this method is in
general not so effective in erasing all false peaks.

4.2.2 Assumptions on signal model As described, the peak detection
problem in a noisy environment requires deliberate processing and thus some
assumptions are critical. This subsection provides these assumptions on the
desired signal g(x) and peak point xp.

(A.1) g(x) is gradually changing, i.e. |g(x1)−g(x0)|<ε0 for adjacent
values of x1 and x0, where ε0 is a predefined small constant.

(A.2) The magnitude (intensity-level) of the valid peak signal is distinct
from most of the observations. In other words, among all points
near the valid peak point xp should satisfy y(xp)�E[y(x)] where
E[·] is the average.

(A.3) g(x) is monotonically increasing in the local interval [x1 xp] and
monotonically decreasing in [xp x2], where xp is a valid peak point.

4.2.3 Peak detecting procedure The proposed intra-profile peak detection
step is divided into four substeps: (i) rejection of high-intensity noise (so
called speckle), (ii) non-linear peak amplification, (iii) derivative operation
followed by a smoothing and (iv) peak candidate collection.

In order to remove the speckles while minimizing the modification of
data, we employ a median filtering in the first step. Employing the median
filter, the signal at the point k is replaced by the median value in a prescribed
window. With (A.1) and noting that the speckles have a high intensity and
narrow shape, they are distinct from the valid peak signal and hence the
median filtering is effective in erasing them. In fact, as shown in Figure 10b,
only small magnitude noise is left after this step.

Thus, the system model for the median filtered sequence ym(x)=m(y(k))
is readily expressed as

ym(x)=g(x)+ε(x) (1)

where the noise signal ε(x) satisfies

|ε(x)|<ε1. (2)

From (A.1) and (2), we deduce that |ym(x1)−ym(x0)|<ε0 +2ε1 =ε2.
Clearly, the change of ym(x) would be far more gradual than y(x). After
taking the derivative of (1), we have y′

m(x)=g′(x)+ε′(x). Although the noise
intensity is reduced, we still expect a considerable amount of zero-crossings
due to the fluctuation of ε(x). Hence, further processing is needed to separate
the false peak from the valid one.

The following observations are useful in devising the additional operator
enhancing the detection quality: first, due to the median filtering, (A.2) is
strengthened and we expect ym(xp)�ym(xf ) where xf is the false peak point.
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Intensity
0

Width Proximity

Fig. 11. The parameters for the intra-profile peak detection. The intensity of
a peak is defined as the peak height in the profile. Detected are only those
peaks whose intensity is greater than a threshold. The width of a peak refers
to the distance between the two points that have the zero gradient value and
that are nearest to the peak location. A peak is not detected if its width is
less than a threshold. The proximity of two peaks is defined as the distance
between the two. When two or more peaks exist within a threshold, only the
peak with the highest intensity is detected.

If we multiply ym(x) to y′
m(x) then

ym(x)(g′(x)+ε′(x)). (3)

The evaluation of (3) at xp, ym(xp)(g′(xp)+ε′(xp)), would be large with
positive sign. Likewise, the evaluation at xp+1 would be large with negative
sign. Hence, we expect

ym(xp)(g′(xp)+ε′(xp))−ym(xp+1)(g′(xp+1)+ε′(xp+1))

�ym(xf )(g′(xf )+ε′(xf ))−ym(xf +1)(g′(xf +1)+ε′(xf +1)) (4)

where xf is the false peak point. The anti-derivative of (3) is

1

2
y2

m(x)= 1

2
(g(x)+ε(x))2. (5)

Secondly, we expect that ε′(x) are located near zero. In fact, since |ε(x)| is
small, so are ε′ and �ε(x). Further, considering the random behavior ε′(x),
we may assume that the number of positive and negative signs are roughly
equal. Hence, by (A.3), we have

∑
ym(x)(g′(x)+ε′(x))=

∑
(g(x)+ε(x))(g′(x)+ε′(x)) (6)

=
∑

(g(x)g′(x)+g(x)ε′(x)+ε(x)g′(x)+ε(x)ε′(x)) (7)

∼
∑

g(x)g′(x)�1 (8)

on the local interval [x1 xp]. In the similar manner, we have

−
∑

ym(x)(g′(x)+ε′(x)) ∼ −
∑

g(x)g′(x)�1 (9)

on the local interval [xp x2]. In summary, for the median filtered sequence,
the square operation in (5) is applied before taking derivative. For the
derivative output, smoothing is employed to further clean the residual
noise ε(x). As a smoothing operator, a small-tap low-pass filter would be
sufficient. Figure 10e shows the smoothing result of Figure 10d with three-
tap finite impulse response filter. We observe that only the zero-crossing
point associated with the valid peak survives after smoothing.

Finally, peak candidate collection is performed. The zero-crossing
detection described in the previous subsection is used. Additional intensity
based detection employing (8) and (9) can be added. Specifically, for a given
threshold γ , we reject the peak candidate xp if

ym(xp)(g′(xp)+ε′(xp))− ym(xp+1)(g′(xp+1)+ε′(xp+1))<γ.

Other than intensity-based thresholding, the implementation of the proposed
algorithm exploits the additional parameters shown in Figure 11.

In order is a remark on how our intra-profile peak detector handles multiple
peak candidates existing within a proximity threshold described in Figure 11:
only the peak candidate with the highest intensity is selected. When analyzing
GC data, the notion of deconvolution (Vivó-Truyols et al., 2005) comes
particularly useful for detecting peaks from overlapped signals. Given that
false peaks in MOHCA profiles are caused more frequently by speckle-
shaped noise than by the convolution of data, further investigation is needed
to determine the benefits of incorporating the deconvolution technique into
MOHCA.

Left window Right window

A
dj

us
te

d 
in

te
ns

ity

Minimum of
the left side

Baseline

 Minimum of
the right side

(a) Adjusted intensity

Potential peak distance
Total profile length

(b) Relative peak location (c) Number of nearby peaks in other profiles

Profile
 index

Window
  width

A110

A115

A120

A125

A130

A135

A140

Uncounted
Counted

Fig. 12. Illustration of some features used in the inter-profile peak analysis.
(a) Adjusted intensity. (b) Relative peak location. (c) The number of nearby
peaks in other profiles. The example in (c) represents the situation in which
δ=7 and a window centered at a peak in the profile with index A120 is being
considered.

4.3 Inter-profile peak analysis
According to the peak characterization presented in Section 4.1, we need
to examine multiple MOHCA profiles simultaneously for accurate peak
detection. In addition, the three parameters (intensity, width and proximity)
of the intra-profile peak detector are set so to minimize the number of FNs,
or the true peaks that are erroneously left undetected. Consequently, it is
likely that the peaks detected in the previous step contain false peaks that
further need to be filtered out. In this inter-profile peak analysis step, we seek
to resolve these issues using a binary classifier that can distinguish true and
false peaks with respect to the following features:

(F.1) The adjusted intensity of a peak: as shown in Figure 12a, we set a
window centered at the peak under consideration. A new baseline
for measuring the peak intensity is then defined as the average of the
minimum values in the left and right window. We use 30 positions
as the size of the left and right windows.

(F.2) The relative location of a peak: the x-coordinate of a peak location
is divided by the total length of the profile the peak resides in, as
shown in Figure 12b.

(F.3) The number of nearby peaks in other (distant) profiles: for each
potential peak location in a profile with index i, we set up a window
centered at this location in another profile with index j. (Recall that
each profile is indexed by the location of the radical source used.) We
count the number of the peaks within this window only if |i−j|≥δ.
(This is because those profiles that have similar indices can have
true peaks at very close locations, as described in Section 4.1. We
use δ=7.) We repeat counting for all other profiles with the same
window and accumulate the number of peaks within the window.
An example is presented in Figure 12c.

(F.4) The logarithm of fast Fourier transform (FFT; Oppenheim
and Schafer, 1989) coefficients: the window mentioned in the
description of (F.1) is considered again. The partial profile within
this window is then transformed into the Fourier domain using FFT.
From the transformed profile, 32 coefficients are extracted, and the
logarithm of these coefficients is used as a 32-dimensional feature.
This is to reflect the difference between true and false peaks in terms
of the changing frequency within the window centered at each peak.

(F.5) The location of radioactive nucleotides on the RNAs: RNA samples
are radiolabeled at the 5′ or 3′ end to visualize cleavage profiles on
the gel. Both 5′ and 3 ′ end labeling methods are adapted, because 5′
end-labeled samples cannot produce cleavage profiles if the position
of cleavage agent is located at the downstream of the cleavage point.
(The cleavage products will appear on the diagonal stripe.)
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Fig. 13. A screen shot of the GUI we developed for this study.

(F.6) RNA solution conditions: MOHCA uses three different types
of conditions (unfolded, native and non-native high monovalent
ion conditions) to provide structural similarities and differences
between the three states of RNAs.

(F.7) The type of radical source: when performing in vitro transcription of
RNAs, modified Adenine (A), Cytosine (C) or Uracil (U) is added to
the reaction, and thus, radical sources are incorporated at A, C or U.
(The original MOHCA experiments with modified Guanosine could
not be carried out due to the scarcity and difficulty of synthesizing
2′-NH2-guanosine α-thio-triphosphate.)

4.4 Implementation and data preparation
We implemented the proposed method in MATLAB. The binary classifier
used in the inter-profile step is based upon LIBSVM (Chang and Lin,
2001), a MATLAB implementation of SVM. We developed a graphical
user interface (GUI) for convenience of the user, and a screen shot of one
of the GUI windows developed is shown in Figure 13. The source code
and a brief user manual are available as the Supplementary Material. For
performance comparison, we obtained the R implementation of two existing
peak detection methods—CWT (Du et al., 2006) and the PROcess package
included in Bioconductor (Gentleman et al., 2004). Additionally, we created
MATLAB code for the conventional LPF method.

We conducted 79 batches of MOHCA experiments and collected 2002
profiles out of these batches. For thorough performance analysis, we
examined every profile and manually identified and labeled all true peaks.
In total, 914 true peaks were identified. For the robustness test shown
in Figure 8b, we also selected 494 profiles in which the manual peak
identification was difficult due to high noise. In order to train the binary
classifier used in the inter-profile step, we randomly selected 176 peaks
(19.3% of total peaks) and reserved them as positive (i.e. true) examples.

The intra-profile peak detector was invoked for each of the 2002 profiles.
To determine the best algorithm parameter values, we performed 10-fold
cross-validation and found the values that resulted in the smallest error rate.
The parameters used in the intra-profile peak detection step were (width,
intensity, proximity) = (5, 0.15, 15). The intra-profile peak detector reported
2383 peaks in total as potential peaks. We compared them with the labeled
peaks and randomly selected 314 out of 1469 (=2383 − 914) false peaks
(21.4%) as negative (i.e. false) examples for training the classifier.

For each training example, we extracted a 38-dimensional feature vector,
which consists of 32 FFT coefficients and six other features, as explained
in Section 4.3. We trained the SVM-based binary classifier using these 490
training examples in their 38-dimensional feature space. Although the SVM
implementation we used was regularized in order to alleviate the effect of
outliers, we made an outlier remover that is based upon k-means clustering,
for additional robustness. We set k = 2 for two categories (outliers and non-
outliers) and observed that using cosine similarity tends to show the best
outlier detection performance.

Finally, we used the trained classifier in order to predict the labels of the
non-example 1893 peaks and computed the precision, recall and F-measure
values based upon the classification result. To calculate MSE of constraint
maps, every map was converted into a matrix of binary integers by assigning
1 to the peak location and 0 to the rest. The MSE of each matrix was
then computed by comparing it with the binary matrix of the corresponding
manual map.
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